MRT-basierte Gehirn-Elastographie zeigt Physik des Glioblastom-Wachstums

MRT-basierte Gehirn-Elastographie zeigt Physik des Glioblastom-Wachstums

Die Fließeigenschaften eines Glioblastoms geben Aufschluss über sein Infiltrationspotential.

  • Datum:
    09.01.2020
  • Autor:
    M. Zingl (mh/ktg)
  • Quelle:
    Charité – Universitätsmedizin Berlin

Weiche Tumoren, wie Glioblastome es sind, durchdringen umgebendes Gewebe und breiten sich rasch aus. Solide Tumoren hingegen bestehen aus einem festen Gewebeverband und behalten bei ihrer Ausbreitung klar umrissene Grenzen. Ob sich ein Hirntumor verdrängend, mit eindeutigen Grenzflächen oder durchdringend ausbreitet, wird durch seine Fließeigenschaften bestimmt.

WissenschaftlerInnen der Charité in Berlin und des Universitätsklinikums Leipzig haben die mechanischen Eigenschaften von Neurotumoren und deren Grenzverhalten untersucht. Um das Verhalten von Glioblastomen zu beschreiben, die in eine starrere Umgebung als sie selbst vordringen, ist das Forschungsteam einen Perspektivwechsel eingegangen: „Wir betrachten Gehirngewebe nicht mehr als bloßen Festkörper, sondern als hochviskose, also sehr zähe Flüssigkeit. Dann werden die physikalischen Mechanismen verständlich“, sagt Studienleiter Prof. Dr. Ingolf Sack.

Wie Wasser in Honig

„Das Gehirn reagiert auf langen Zeitskalen ähnlich wie Honig“, erklärt Prof. Dr. Josef A. Käs, von der Fakultät für Physik und Geowissenschaften an der Universität Leipzig. „Wie sich Tumoren darin ausbreiten, klar abgegrenzt oder infiltrativ, bestimmt wiederum deren Zähigkeit, die Viskosität. Ist sie gering, wie etwa bei Wasser, ergeben sich instabile Grenzflächen. Der quasi dünnflüssige Tumor sickert förmlich in den umschließenden Honig. Breitet sich der Tumor allerdings mit hoher Viskosität aus, ist also deutlich zäher, beispielsweise wie Tofu, dann ergeben sich glatte, fest umrissene Grenzflächen.“

Anhand von gewebsimitierenden Modellen wie Heparin-Gel oder Tofu konnte das Forschungsteam zeigen, wie ihre anomale Fließeigenschaft es weichen Hirntumoren ermöglicht, physisch in umliegendes Gewebe einzudringen.

Gehirn-Elastographie

Die MRT-basierte, hochauflösende Gehirn-Elastographie ermöglichte es, diese neuen Erkenntnisse auf Gehirntumore anzuwenden. Invasiv wachsende Glioblastome weisen einen höheren Wassergehalt auf als das umliegende Gewebe, während beispielsweise gutartige Meningeome weniger Wasser enthalten als Hirngewebe. Dabei unterscheiden sich beide Tumorarten nicht hinsichtlich ihrer mechanischen Steifigkeit, beide Tumorarten sind weicher als umliegendes Gewebe.

Die Forschenden schließen aus dieser Tatsache, dass vor allem die Fließeigenschaften, also wie dünnflüssig oder wie zähflüssig sich ein Tumor verhält, Aufschlüsse über sein Infiltrationspotential und somit seine Aggressivität geben können: „Für die diagnostische Radiologie ergeben sich damit völlig neue Möglichkeiten zur Abschätzung der Gefährlichkeit von Hirntumoren, denn die Viskosität von Gehirn und Tumoren lässt sich im Rahmen einer Gehirn-Elastographie ohne Kontrastmittel, Strahlung und invasive Operation bestimmen“, so Prof. Sack. Weitere klinische Studien sind notwendig, um künftig eine Klassifizierung von Hirntumoren mittels der noch jungen bildgebenden Technik zu ermöglichen.

Zur Studie

Streitberger KJ et al.
How tissue fluidity influences brain tumor progression.
PNAS 2019 Dez 16

Ihr direkter Draht zu uns