Künstliche Beatmung schonender durch digitales Lungenmodell

Künstliche Beatmung schonender durch digitales Lungenmodell
Aus CT-Daten berechnete Darstellung des aktuellen Zustands einer Patientenlunge – orangefarbene Bereiche markieren Covid-19-Schädigungen (©Jakob Richter / TUM)

Ein digitales Modell der Lunge ermöglicht eine schonendere künstliche Beatmung und könnte so die Überlebenschancen nicht nur bei schweren Verläufen von Covid-19 deutlich erhöhen.

  • Datum:
    07.05.2020
  • Autor:
    U. Marsch (mh/ktg)
  • Quelle:
    Technische Universität München

Für PatientenInnen mit akutem Lungenversagen (Acute Respiratory Distress Syndrome, ARDS) kann die künstliche Beatmung lebensrettend sein. Doch die Situation ist paradox: Während die Mediziner versuchen, mit Druck die Lunge offen zu halten und den Austausch von Sauerstoff und Kohlendioxid weiter zu ermöglichen, kann der Druck Teile der Lunge auch so stark schädigen, dass dies tödliche Folgen hat.

Den behandelnden Medizinern stehen nur wenige Parameter zur Verfügung, um die optimale Beatmung einzustellen. Doch die Lunge ist ein komplexes Organ. Der Druck, der benötigt wird, um alle Bereiche offen zu halten, kann in manchen Bereichen schon zu Überdehnungen führen. Gleichzeitig muss ein wiederholtes Öffnen und Schließen einzelner Lungenbereiche vermieden werden. Denn das Gewebe reagiert auf den mechanischen Reiz in beiden Fällen mit einer Entzündung.

Bislang keine Möglichkeit zum Erkennen von Überdehnung

„Die Krux dabei ist“, sagt Wolfgang Wall, Professor für Numerische Mechanik an der TU München, „dass die Behandelnden bisher keine Möglichkeit hatten, eine Überdehnung zu erkennen. Von der Luftröhre bis in die feinsten Verästelungen besitzt die Lunge mehr als 20 Stufen der Verzweigung, und es gibt keine Messmethode um festzustellen, was auf der Mikroebene der Lunge während der Beatmung passiert.“

Die Lunge ist im Bereich der Alveolen, die in vielen Fachbüchern noch immer fälschlicherweise wie Weinreben dargestellt werden, in Wahrheit ein schwammartiges Gewebe, über dessen feinste Wände der Austausch zwischen der Luft und dem Blut erfolgt. Die mechanischen Wechselwirkungen zwischen den verschiedenen Gewebearten, der strömenden Luft und dem Flüssigkeitsfilm auf dem Gewebe sind extrem komplex.

Viele Jahre Forschung mit immer weiter verfeinerten Simulationsmodellen für das Verhalten von Gewebe und Luftstrom sowie mit mikromechanischen Versuchen an realen Gewebeproben haben nun zu einem digitalen Lungenmodell geführt.

Ausgehend von CT-Daten des Thorax und der Analyse eines Atemzuges zeigt es dem Behandelnden, welche Einstellungen des Beatmungsgeräts zu welchen Belastungen auf der Mikroebene der Lunge führen. Entsprechend kann dieser die Einstellungen anpassen.

Künstliche Intelligenz hilft bei der Interpretation

Klinischer Standard ist es, die Einstellungen für die Beatmung anhand einer vom Körpergewicht ausgehenden Faustformel zu berechnen. Aus den CT-Daten errechnet das Computermodell der Arbeitsgruppe von Prof. Wall das tatsächliche Lungenvolumen. Es erkennt dabei sogar den Zustand einzelner Lungenbereiche, die durch die Erkrankung bereits geschädigt sind.

Aus der Druck- und Volumenänderung während eines Atemzuges errechnet der Computer dann Werte für die mechanischen Eigenschaften der Lunge des Patienten. Damit erzeugt das Modell einen digitalen Zwilling der Patientenlunge. Er ist so präzise, dass das Programm voraussagen kann, welche Einstellungen zu Schäden führen würden.

„Über 80 Prozent der Todesfälle infolge von Covid-19 sind auf akutes Lungenversagen zurückzuführen. Bei längerfristiger künstlicher Beatmung von Patienten sinkt die Überlebensrate derzeit auf etwa 50 Prozent“, sagt Prof. Wall. „Ziel unserer Arbeiten ist es, dass in Zukunft an jedem Beatmungsplatz ein digitales Lungenmodell bei der optimalen Einstellung der Beatmung hilft und wir so die Überlebenschance deutlich erhöhen können.“